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Introduction

Applications

Turbulent or transitional flows occur in many physical contexts:

External flows (civil Engineering, Hydrodynamics, or
Aeronautical applications);

Internal flows (e.g. Haemodynamics).

DNS vs. LES

The Direct Numerical Simulation (DNS) is generally
computationally challenging or not affordable, for which Large
Eddy Simulations (LES) models can instead be used.

Numerical Approximation (LES)

Even with LES modeling, efficient and flexible solvers for the
incompressible Navier–Stokes equations, e.g. based on the Finite
Elements method, are required to make feasible the numerical
simulation, also in a High Performance Computing HPC setting.
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Motivations

Goals

Develop an efficient solver for LES modeling of the
incompressible Navier–Stokes equations.

Use the Finite Elements method for the spatial
approximation.

Use efficient time discretization schemes.

Use a scalable solver for parallel computing (HPC).

Solve large scale problems at high Reynolds (Re) numbers.

Methodology

Variational Multiscale (VMS) approach with LES modeling
(VMS–LES) [Bazilevs et al., CMAME, 2007], [Codina et
al., CMAME, 2007], [Wall et al, CMAME 2010].

Backward Differentiation Formulas (BDF) for the time
discretization to define a semi–implicit scheme
(VMS–LES/BDF).

Scalable solver for HPC with Multigrid (ML) preconditioner.
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The incompressible Navier–Stokes equations

Navier–Stokes equations for incompressible flows (Newtonian)

ρ
∂u
∂t

+ ρ(u · ∇)u − f −∇·σ(u, p) = 0 in Ω × (0,T ),

∇·u = 0 in Ω × (0,T ),

with suitable initial and boundary conditions on ΓD ⊆ ∂Ω; u and p are the velocity
and the pressure, ρ the density, f the external forces, σ(u, p) = −pI + 2µε(u) the
stress tensor, µ the dynamic viscosity, and ε(u) = 1

2
(∇u + (∇u)T ) the strain tensor.

Weak formulation

The weak formulation of the Navier–Stokes equations reads:

find U = {u, p} ∈ Vg :(
w , ρ ∂u

∂t

)
+ (w , ρ(u · ∇)u) + (∇w , µ(∇u +∇uT ))− (∇·w , p) + (q,∇·u) = (w , f )

for all W = {w , q} ∈ V0, ∀t ∈ (0,T ),
(1)

with the function spaces Vg = {u ∈
[
H1(Ω)

]d
: u|ΓD = g},

V0 = {u ∈
[
H1(Ω)

]d
: u|ΓD = 0}, Q = L2(Ω), Vg = Vg ×Q, and V0 = V0 ×Q.
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Spatial approximation: Finite Elements and VMS–LES modelling

Finite Elements discretization

We define X h
r :=

{
vh ∈ C 0(Ω) : vh|K ∈ Pr , for all K ∈ Th

}
as the Finite Elements

function space of degree r ≥ 1 over Ω triangulated with a mesh Th of tetrahedrons;
hK is the diameter of the element K ∈ Th.

Multiscale direct–sum decomposition

The space V (Vg or V0) is decomposed into the coarse and fine scales subspaces:

V = Vh ⊕V ′,

Vh is the coarse scale function space associated to the Finite Elements discretization
X h

r and V ′ is an infinite dimensional function space representing the fine scales. For
the weak formulation (1), we apply the decomposition to the trial and test functions:

w = w h + w ′,
q = qh + q′,

u = uh + u′,
p = ph + p′.
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Spatial approximation: Finite Elements and VMS–LES modelling

VMS–LES modeling [Bazilevs et al., CMAME, 2007]

The fine scale velocity and pressure components are chosen as:

u′ ' −τM(uh) rM(uh, ph),

p′ ' −τC (uh) rC (uh);

rM(uh, ph) and rC (uh) are the residuals of the momentum and continuity equations:

rM(uh, ph) = ρ
∂uh

∂t
+ ρuh · ∇uh +∇ph − µ∆uh − f ,

rC (uh) = ∇· uh.

The stabilization parameters τM and τC are set as:

τM = τM(uh) =

(
σ2ρ2

∆t2
+
ρ2

h2
K

|uh|2 +
µ2

h4
K

Cp

)−1/2

, (2)

τC = τC (uh) =
h2
K

τM(uh)
, (3)

with σ a constant equal to the order of the time discretization chosen with time step
∆t and Cp = 60 · 2r−2 a constant related to an inverse inequality.
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Spatial approximation: Finite Elements and VMS–LES modelling

Semi–discrete VMS–LES formulation (weak residual)

find Uh = {uh, ph} ∈ Vh
g : A(W h,Uh)− F (W h) = 0

for all W h = {w h, qh} ∈ Vh
0 , ∀t ∈ (0,T ),

where:

A(W h,Uh) := ANS(W h,Uh) + AVMS(W h,Uh)

F (W h) := (w h, f ),

ANS(W h,Uh) :=
(
w h, ρ ∂uh

∂t

)
+
(
w h, ρ(uh · ∇)uh

)
+
(
∇w h, µ(∇uh + (∇uh)T )

)
−
(
∇·w h, ph

)
+
(
qh,∇·uh

)
,

AVMS(W h,Uh) :=
(
ρuh · ∇w h +∇qh, τM(uh) rM(uh, ph)

)
−
(
∇·w h, τC (uh) rC (uh)

)
+
(
ρuh · (∇uh)T , τM(uh) rM(uh, ph)

)
−
(
∇w h, τM(uh) rM(uh, ph)⊗ τM(uh) rM(uh, ph)

)
.

VMS–SUPG and VMS–LES terms
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Time discretization: implicit BDF schemes

Backward Differentiation Formulas (BDF)

We partition [0,T ] into Nt subintervals of size ∆t = T
Nt

with tn = n ∆t for

n = 0, . . . ,Nt ; uh
n ≈ uh(tn) and ph

n ≈ ph(tn).
Depending the order σ of the BDF scheme, the approximation of the time derivative
of the velocity reads:

∂uh

∂t
≈
ασuh

n+1 − uh
n,BDFσ

∆t
,

where for BDF schemes of orders σ = 1, 2, 3 we have:

uh
n,BDFσ =


uh
n if n ≥ 1, for σ = 1 (BDF1),

2uh
n − 1

2
uh
n−1 if n ≥ 2, for σ = 2 (BDF2),

3uh
n − 3

2
uh
n−1 + 1

3
uh
n−2 if n ≥ 3, for σ = 3 (BDF3),

ασ =


1, for σ = 1 (BDF1),

3
2
, for σ = 2 (BDF2),

11
6
, for σ = 3 (BDF3).
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Time discretization: implicit BDF schemes

The fully implicit BDF scheme for VMS–LES modeling

For a BDF scheme of order σ:

find uh
n+1 ∈ Vh

g and ph
n+1 ∈ Qh :(

w h, ρ
ασuh

n+1−uh
n,BDFσ

∆t

)
+
(
w h, ρ (uh

n+1 · ∇)uh
n+1

)
+
(
∇w h, µ

(
∇uh

n+1 + (∇uh
n+1)T

))
−
(
∇·w h, ph

n+1

)
+
(
qh,∇·uh

n+1

)
+
(
ρ uh

n+1 · ∇w h +∇qh, τM(uh
n+1) rM(uh

n+1, p
h
n+1)

)
−
(
∇·w h, τC (uh

n+1) rC (uh
n+1)

)
+
(
ρ uh

n+1 · (∇w h)T , τM(uh
n+1) rM(uh

n+1, p
h
n+1)

)
−
(
∇w h, τM(uh

n+1) rM(uh
n+1, p

h
n+1)⊗ τM(uh

n+1) rM(uh
n+1, p

h
n+1)

)
=
(
w h, f n+1

)
,

for all w h ∈ Vh
0 and qh ∈ Qh, ∀n ≥ σ − 1,

given uh
n, . . . , uh

n+1−σ, with f n+1 = f (tn+1).

The problem is nonlinear both in uh
n+1 and ph

n+1.
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Time discretization: the semi–implicit BDF scheme (VMS–LES/BDF)

Extrapolation with Newton–Gregory backward polynomials

The variables uh
n+1 and ph

n+1 are linearized by means of extrapolation with
Newton–Gregory backward polynomials.

We consider the following extrapolations of orders σ= 1, 2, 3 for the velocity and
pressure variables at the discrete time tn+1:

uh
n+1,σ =


uh
n if n ≥ 0, for σ = 1 (BDF1),

2 uh
n − uh

n−1 if n ≥ 1, for σ = 2 (BDF2),

3 uh
n − 3 uh

n−1 + uh
n−2 if n ≥ 2, for σ = 3 (BDF3)

ph
n+1,σ =


ph
n if n ≥ 0, for σ = 1 (BDF1),

2 ph
n − ph

n−1 if n ≥ 1, for σ = 2 (BDF2),

3 ph
n − 3 ph

n−1 + ph
n−2 if n ≥ 2, for σ = 3 (BDF3).

The extrapolations of uh
n+1 and ph

n+1 induce similar extrapolations
on the residuals and stabilization parameters.
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Time discretization: the semi–implicit BDF scheme

The semi–implicit BDF scheme for VMS–LES modeling (VMS–LES/BDF)

For a BDF scheme of order σ:

find uh
n+1 ∈ Vh

g and ph
n+1 ∈ Qh :(

w h, ρ
ασuh

n+1−uh
n,BDFσ

∆t

)
+ (w h, ρ

(
uh
n+1,σ · ∇)uh

n+1

)
+
(
∇w h, µ (∇uh

n+1 + (∇uh
n+1)T )

)
−
(
∇·w h, ph

n+1

)
+
(
qh,∇·uh

n+1) + (ρ uh
n+1,σ · ∇w h +∇qh, τ n+1,σ

M r n+1,σ
M (uh

n+1, p
h
n+1)

)
−
(
∇·w h, τ n+1,σ

C rC (uh
n+1)

)
+
(
ρ uh

n+1,σ · (∇w h)T , τ n+1,σ
M r n+1,σ

M (uh
n+1, p

h
n+1)

)
−
(
∇w h, τ n+1,σ

M r̂ n+1,σ
M ⊗ τ n+1,σ

M r̃ n+1,σ
M (uh

n+1, p
h
n+1)

)
−
(
∇w h, τ n+1,σ

M r̂ n+1,σ
M ⊗ τ n+1,σ

M ρασ
uh
n+1

∆t

)
+

(
∇w h, τ n+1,σ

M r n+1,σ
M (uh

n+1, p
h
n+1)⊗ τ n+1,σ

M ρ
uh
n,BDF

∆t

)
=
(
w h, f n+1

)
,

for all w h ∈ Vh
0 and qh ∈ Qh, ∀n ≥ σ − 1,

given uh
n, . . . , uh

n+1−σ.

The problem is linear both in uh
n+1 and ph

n+1.
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Time discretization: the semi–implicit BDF scheme

Extrapolated stabilization parameters

τ n+1,σ
M :=

(
σ2ρ2

∆t2
+
ρ2

h2
K

∣∣∣uh
n+1,σ

∣∣∣2 +
µ2

h4
K

Cp

)−1/2

,

τ n+1,σ
C =

h2
K

τ n+1,σ
M

.

Extrapolated residuals

r n+1,σ
M (uh

n+1, p
h
n+1) := ρ

(
ασuh

n+1−uh
n,BDFσ

∆t

)
+ ρ uh

n+1,σ · ∇uh
n+1

+∇ph
n+1 − µ∆uh

n+1 − f n+1,

r̂ n+1,σ
M := r n+1,σ

M (uh
n+1,σ, p

h
n+1,σ),

r̃ n+1,σ
M (uh

n+1, p
h
n+1) := ρuh

n+1,σ · ∇uh
n+1 +∇ph

n+1 − µ∆uh
n+1 − f n+1.

The extrapolation of the stabilization parameters and residuals is
based on the extrapolated variables uh

n+1,σ and ph
n+1,σ.
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Time discretization: the semi–implicit BDF scheme

Remarks

The fully discrete semi–implicit formulation (VMS–LES/BDF) yields a linear
problem in the variables uh

n+1 and ph
n+1 to be solved only once at each time

step tn.

At the discrete level, assembling and solving the linear system is done only
once for each time step tn (fewer terms than with Newton linearization).

BDF schemes with extrapolation yields stable time discretizations of the
Navier–Stokes equations at the continuous level (under suitable boundary
conditions).

The stability in respect of the time discretization for the VMS–LES/BDF
scheme is not guaranteed a priori (for all ∆t).

In practice, stability in respect of the time discretization is also obtained for
relatively large time steps ∆t.
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Finite Elements library LifeV

Numerical implementation

The implementation of the VMS–LES/BDF mehod for the incompressible
Navier–Stokes equations is carried out in the Finite Elements Library LifeV.

LifeV

Finite Elements Library for the numerical approximation of PDEs

Research code oriented to the development and test of new numerical
methods and algorithms

C++, object oriented, parallel

LifeV relies on Trilinos Library/packages

Modular design; use of the Expression Template Assembly (ETA) package

Developers: CMCS – EPFL, E(CM)2 – Emory, MOX – Polimi, REO,
ESTIME – INRIA

Distributed under LGPL, http://www.lifev.org
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Multigrid (ML) preconditioner

Solver

We use the GMRES method through the Belos package of Trilinos to solve the
linear system. The stopping criterion is based on the relative residual, with
tolerance tol = 10−6.
The right–preconditioning strategy is used.

ML Preconditioner

We use the Multigrid preconditioners available from the ML package of
Trilinos. The preconditioner is built on the system matrix [Gee et. al, Sandia
National Labs., 2006].

Default parameters setting: NSSA, nonsymmetric smoothed aggregation
variant for highly nonsymmetric operators;

max levels = 3, cycle applications = 3, pde equations = 4;

smoother: Gauss-Seidel, 3 sweeps;

aggregation: type = Uncoupled-MIS.
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Flow past a squared cylinder

Benchmark problem

Flow past a squared cylinder at Re = 22,000 [Koobus and Farhat, 2004]
(experimental data available).

D

Lout

2H
Lin

Ls
x

y

z

Γin

Γout

Space and time discretizations

FEM: P1–P1 1,323,056 DOFs; P2–P2 9,209,040 DOFs.

Different choices of BDF order (σ = 1 or 2) and ∆t.
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Flow past a squared cylinder

Vortex structures – Lambda 2 criterion
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Flow past a squared cylinder

Comparison of drag coefficient CD vs. time t for different discretizations

FEM P1–P1 and P2–P2; BDF orders σ = 1 and 2.
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Flow past a squared cylinder

Comparison of results for different discretizations and literature

FEM P1–P1 and P2–P2; BDF orders σ = 1 and 2.

Numerical Results

FEM ∆t BDF σ CD rms(CD) rms(CL) Strouhal

P1–P1

0.005 s 1 2.49 0.23 1.49 0.133
0.0025 s 1 2.35 0.11 1.18 0.138
0.00125 s 1 2.24 0.08 0.89 0.142

0.005 s 2 2.27 0.09 0.87 0.144
0.0025 s 2 2.16 0.07 0.66 0.146
0.00125 s 2 2.05 0.04 0.58 0.146

P2–P2
0.005 s 2 2.00 0.10 0.58 0.142
0.0025 s 2 2.24 0.12 0.98 0.141
0.00125 s 2 2.71 0.15 1.5 0.129

Literature (LES)

LES method CD rms(CD) rms(CL) Strouhal

VMS–F.V. [Koobus., 2004] 2.10 0.18 1.08 0.136
Smagorinsky [Rodi, 1997] 1.66–2.77 0.1–0.27 0.38–1.79 0.07–0.15
Dynamic LES [Sohankar, 2000] 2.00–2.32 0.16–0.20 1.23–1.54 0.127–0.135
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Flow past a squared cylinder

Scalability results of the solver

Linear solver based on GMRES and ML preconditioner; simulations performed
using FEM P2–P2, BDF2, ∆t = 0.0025 s.
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Computations carried out with Piz Dora, a Cray XC40 supercomputer

at the Swiss National Supercomputing Center (CSCS).
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Conclusions

We considered a semi–implicit scheme based on BDF formulas and
extrapolation for the time discretization of the Navier–Stokes equation
with VMS–LES modeling (VMS–LES/BDF); spatial discretization was
performed with low order Finite Elements method.

We solved problems in a parallel computing framework (HPC), for which
we showed the scalability of the solver with Multigrid preconditioning.

We applied the method to internal and external flow problems at high
Reynolds numbers.

The numerical tests showed that the discretization based on the
VMS–LES/BDF method is efficient, versatile, accurate, and stable for
wide ranges of the time steps.
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