Wave splitting for time-dependent scattered field separation

Marie KRAY

Department of Mathematics and Computer Sciences, University of Basel, Switzerland

Joint work with Marcus J. Grote (Univ. Basel), Frédéric Nataf (LJLL Paris 6) and Franck Assous (Ariel Univ.)

> Swiss Numerical Analysis Day – Geneva 2015 April 17th, 2015

BASEL

- Motivation
- Principle using non-reflecting boundary conditions
- 2 Wave splitting in the two-space dimensional case
 - Change of coordinates
 - Initial and boundary conditions
- 3 Numerical results in the 2D-case
 - Two point-sources
 - One point-source and one obstacle
 - 4 Conclusion

Time history of wave fields at one location: incident wave impinges on a sound-soft inclusion

Wave splitting Motivation

5 / 17

Multiple scattering problem: $u = u_1 + u_2$, in $\Omega := \mathbb{R}^d \setminus (S_1 \cup S_2)$

u satifies:

$$\frac{\partial^2 u}{\partial t^2} - c^2 \Delta u = 0 \qquad \text{in } \Omega, \ t > 0.$$

Question: Given the measured total field u, can we recover u_1 and u_2 without knowing in advance either of them ?

Marie KRAY (Univ. Basel)

Wave splitting Motivation

5 / 17

Multiple scattering problem: $u = u_1 + u_2$, in $\Omega := \mathbb{R}^d \setminus (S_1 \cup S_2)$

u satifies:

$$\frac{\partial^2 u}{\partial t^2} - c^2 \Delta u = 0 \qquad \text{in } \Omega, \ t > 0.$$

Question: Given the measured total field u, can we recover u_1 and u_2 without knowing in advance either of them ?

Marie KRAY (Univ. Basel)

Wave splitting Motivation

5 / 17

Multiple scattering problem: $u = u_1 + u_2$, in $\Omega := \mathbb{R}^d \setminus (S_1 \cup S_2)$

u satifies:

$$\frac{\partial^2 u}{\partial t^2} \ - \ c^2 \Delta u \ = \ 0 \qquad \text{in } \Omega, \ t > 0.$$

Question: Given the measured total field u, can we recover u_1 and u_2 without knowing in advance either of them ?

Marie KRAY (Univ. Basel)

Outside S_1 and S_2 , u satisfies:

$$\frac{\partial^2 u}{\partial t^2} - c^2 \Delta u = 0 \quad \text{in } \Omega, \ t > 0,$$

c > 0 constant.

At t = 0, no signal in Ω , then uniqueness of splitting¹

$$u = u_1 + u_2$$
 in Ω , $t > 0$

and u_k outgoing (3D):

$$u_k(t, r_k, \theta_k, \varphi_k) = \frac{1}{r_k} \sum_{i \ge 0} \frac{f_{k,i}(r_k - ct, \theta_k, \varphi_k)}{(r_k)^i}$$

 $(r_k, \theta_k, \varphi_k)$ spherical coordinates centered at C_k .

Marie KRAY (Univ. Basel)

6 / 17

¹ M. J. Grote and C. Kirsch. Nonreflecting boundary condition for time-dependent multiple scattering. J. Comput. Phys., 221(1):41–67, 2007.

BASEL

7 / 17

Since

$$u_k(t, r_k, \theta_k, \varphi_k) = \frac{1}{r_k} \sum_{i \ge 0} \frac{f_{k,i}(r_k - ct, \theta_k, \varphi_k)}{(r_k)^i}$$

 $(r_k, \theta_k, \varphi_k)$ spherical coordinates centered at C_k ,

 $\textit{m}^{th}\text{-order}$ absorbing boundary condition^2 on any Γ in Ω

$$B_k[u_k] = O\left(\frac{1}{r_k^{2m+1}}\right), \qquad k = 1, 2$$

Marie KRAY (Univ. Basel)

 $^{^{2}}$ A. Bayliss and E. Turkel. Radiation boundary conditions for wave-like equations. Comm. Pure Appl. Math., 33(6):707–725, 1980.

Neglecting the error term:

$$B_j[u_k] = B_j[u_k + u_j] = B_j[u], \qquad j = 1, 2, \quad k \neq j$$

Recover u_1 and u_2 by solving:

$$\begin{cases} B_2[u_1] = B_2[u] & (1) \\ B_1[u_2] = B_1[u] & (2) \end{cases}$$

where *u* is known (measurements on Γ)

Neglecting the error term:

$$B_j[u_k] = B_j[u_k + u_j] = B_j[u], \qquad j = 1, 2, \quad k \neq j$$

Recover u_1 and u_2 by solving:

$$\begin{cases} B_2[u_1] = B_2[u] & (1) \\ B_1[u_2] = B_1[u] & (2) \end{cases}$$

where u is known (measurements on Γ)

Difficulty: integration of partial differential equation (1)-(2) on the submanifold Γ

- Find adequate initial and boundary conditions
- Change of coordinates from $(r_k, \theta_k, \varphi_k)$ to $(r_j, \theta_j, \varphi_j)$
- Remove normal/radial derivatives (equation on Γ involving only (t, θ_j, φ_j))

Marie KRAY (Univ. Basel)

Wave splitting in the two-space dimensional case Change of coordinates

In 2D, Bayliss-Turkel first order absorbing boundary condition

$$B_j[u] = \frac{1}{c} \frac{\partial u}{\partial t} + \frac{\partial u}{\partial r_j} + \frac{u}{2r_j}$$

For simplicity, let $\Gamma:=\Gamma_1\cup\Gamma_2$ with

 Γ_k = semi-circle centered at C_k

Wave splitting in the two-space dimensional case Change of coordinates

10 / 17

E.g. to recover u_1 on Γ_1 (semi-circle centered at C_1)

$$B_2[u_1] = B_2[u]$$

$$\frac{1}{c}\frac{\partial u_1}{\partial t} + \frac{\partial u_1}{\partial r_2} + \frac{u_1}{2r_2} = \frac{1}{c}\frac{\partial u}{\partial t} + \frac{\partial u}{\partial r_2} + \frac{u}{2r_2}$$

How to solve this PDE for u_1 ?

- need initial and boundary conditions
- $\bullet\,$ remove the radial derivative! we solve on Γ_1
- derivatives in (r_2, θ_2) , when domain in (r_1, θ_1)

$$\implies$$
 rewrite the PDE using only $\frac{\partial}{\partial t}, \ \frac{\partial}{\partial \theta_1}$ and 0th-order term

Wave splitting in the two-space dimensional case Change of coordinates

Finally: PDE to recover $f_1 = \sqrt{r_1}u_1$ on Γ_1 , t > 0

$$\left(\alpha_1(\theta_1)\frac{\partial}{\partial t}+\beta_1(\theta_1)\frac{\partial}{\partial \theta_1}+\gamma_1(\theta_1)\right)f_1=\left(\frac{1}{c}\frac{\partial}{\partial t}+\frac{\partial}{\partial r_2}+\frac{1}{2r_2}\right)u,$$

with

$$\begin{aligned} \alpha_{1}(\theta_{1}) &= \frac{\sqrt{r_{1}^{2} + \ell^{2} - 2r_{1}\ell\cos(\theta_{1})} - r_{1} + \ell\cos(\theta_{1})}{c\sqrt{r_{1}}\sqrt{r_{1}^{2} + \ell^{2} - 2r_{1}\ell\cos(\theta_{1})}}, \\ \beta_{1}(\theta_{1}) &= \frac{\ell\sin(\theta_{1})}{r_{1}\sqrt{r_{1}}\sqrt{r_{1}^{2} + \ell^{2} - 2r_{1}\ell\cos(\theta_{1})}}, \\ \gamma_{1}(\theta_{1}) &= \frac{\ell\cos(\theta_{1})}{2r_{1}\sqrt{r_{1}}\sqrt{r_{1}^{2} + \ell^{2} - 2r_{1}\ell\cos(\theta_{1})}}, \end{aligned}$$

and ℓ the signed distance between C_1 and C_2 .

We want to recover $f_1=\sqrt{r_1}u_1$ which satisfies on Γ , t>0

$$\left(\alpha_1(\theta_1)\frac{\partial}{\partial t}+\beta_1(\theta_1)\frac{\partial}{\partial \theta_1}+\gamma_1(\theta_1)\right)f_1=\left(\frac{1}{c}\frac{\partial}{\partial t}+\frac{\partial}{\partial r_2}+\frac{1}{2r_2}\right)u,$$

Initial condition? At t = 0, no signal in Ω : all sources in $S_1 \cup S_2$

 \implies f_1 and f_2 vanish in Ω , thus on $\Gamma_1 \cup \Gamma_2$

the initial condition is:

$$f_1 = 0$$
, on Γ_1 , at $t = 0$.

Wave splitting in the two-space dimensional case Initial and boundary conditions

Hyperbolic PDE

$$\left(\alpha_1(\theta_1)\frac{\partial}{\partial t} + \beta_1(\theta_1)\frac{\partial}{\partial \theta_1} + \gamma_1(\theta_1)\right)f_1 = \left(\frac{1}{c}\frac{\partial}{\partial t} + \frac{\partial}{\partial r_2} + \frac{1}{2r_2}\right)u$$

trivial at $\theta_1 = 0$ or π modulo 2π , since $\alpha_1(\theta_1) = 0, \beta_1(\theta_1) = 0$

 \implies Dirichlet boundary condition: $f_1 = \frac{B_2[u]}{\gamma_1(0)}$ at $\theta_1 = 0$

Marie KRAY (Univ. Basel)

UNI BASEI

Wave splitting in the two-space dimensional case Initial and boundary conditions

14 / 17

Reconstruction of f_1 (resp. f_2) on Γ_1 (resp. Γ_2)

by subtraction, f_2 (resp. f_1) can be reconstructed on Γ_1 (resp. Γ_2)

Marie KRAY (Univ. Basel)

Numerical results in the 2D-case Two point-sources

15 / 17

Time history of wave fields at one location: two purely radial wave fields generated by point-sources

Numerical results in the 2D-case One point-source and one obstacle

16 / 17

Time history of wave fields at one location: incident wave impinges on a sound-soft inclusion

Conclusion

17 / 17

New partial differential equation

- on a submanifold Γ
- local in space and time
- in the time-dependent domain

Method extendable to:

- 2 or more scatterers
- vector-valued wave equations from electromagnetics and elasticity
- improved accuracy with higher order absorbing boundary condition (more terms in the progressive wave expansion)

M.J. Grote, M. Kray, F. Nataf and F. Assous.

Wave splitting for time-dependent scattered field separation. C. R. Acad. Sci. Paris, Serie I (2015)