Wave splitting for time-dependent scattered field separation

Marie KRAY

Department of Mathematics and Computer Sciences, University of Basel, Switzerland

Joint work with Marcus J. Grote (Univ. Basel), Frédéric Nataf (LJLL Paris 6) and Franck Assous (Ariel Univ.)

Swiss Numerical Analysis Day - Geneva 2015
April $17^{\text {th }}, 2015$

UNI
BASEL
(1) Wave splitting

- Motivation
- Principle using non-reflecting boundary conditions
(2) Wave splitting in the two-space dimensional case
- Change of coordinates
- Initial and boundary conditions
(3) Numerical results in the 2D-case
- Two point-sources
- One point-source and one obstacle
(4) Conclusion

Wave splitting

Wave splitting

Motivation

Time history of wave fields at one location: incident wave impinges on a sound-soft inclusion

At location 1

Wave splitting

Multiple scattering problem: $u=u_{1}+u_{2}, \quad$ in $\Omega:=\mathbb{R}^{d} \backslash\left(S_{1} \cup S_{2}\right)$

Ω

u satifies:

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \Delta u=0 \quad \text { in } \Omega, t>0
$$

Question: Given the measured total field u, can we recover u_{1} and u_{2} without knowing in advance either of them ?

Wave splitting

Multiple scattering problem: $u=u_{1}+u_{2}, \quad$ in $\Omega:=\mathbb{R}^{d} \backslash\left(S_{1} \cup S_{2}\right)$

u satifies:

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \Delta u=0 \quad \text { in } \Omega, t>0
$$

Question: Given the measured total field u, can we recover u_{1} and u_{2} without knowing in advance either of them ?

Wave splitting

Motivation

Multiple scattering problem: $u=u_{1}+u_{2}, \quad$ in $\Omega:=\mathbb{R}^{d} \backslash\left(S_{1} \cup S_{2}\right)$

u satifies:

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \Delta u=0 \quad \text { in } \Omega, t>0
$$

Question: Given the measured total field u, can we recover u_{1} and u_{2} without knowing in advance either of them ?

Outside S_{1} and S_{2}, u satisfies:

$$
\frac{\partial^{2} u}{\partial t^{2}}-c^{2} \Delta u=0 \quad \text { in } \Omega, t>0
$$

$c>0$ constant.
At $t=0$, no signal in Ω, then uniqueness of splitting ${ }^{1}$

$$
u=u_{1}+u_{2} \quad \text { in } \Omega, t>0
$$

and u_{k} outgoing (3D):

$$
u_{k}\left(t, r_{k}, \theta_{k}, \varphi_{k}\right)=\frac{1}{r_{k}} \sum_{i \geq 0} \frac{f_{k, i}\left(r_{k}-c t, \theta_{k}, \varphi_{k}\right)}{\left(r_{k}\right)^{i}}
$$

$\left(r_{k}, \theta_{k}, \varphi_{k}\right)$ spherical coordinates centered at C_{k}.

[^0]Since

$$
u_{k}\left(t, r_{k}, \theta_{k}, \varphi_{k}\right)=\frac{1}{r_{k}} \sum_{i \geq 0} \frac{f_{k, i}\left(r_{k}-c t, \theta_{k}, \varphi_{k}\right)}{\left(r_{k}\right)^{i}}
$$

$\left(r_{k}, \theta_{k}, \varphi_{k}\right)$ spherical coordinates centered at C_{k},
m^{th}-order absorbing boundary condition ${ }^{2}$ on any Γ in Ω

$$
B_{k}\left[u_{k}\right]=O\left(\frac{1}{r_{k}^{2 m+1}}\right), \quad k=1,2
$$

[^1]
Wave splitting

Neglecting the error term:

$$
B_{j}\left[u_{k}\right]=B_{j}\left[u_{k}+u_{j}\right]=B_{j}[u], \quad j=1,2, \quad k \neq j
$$

Recover u_{1} and u_{2} by solving:

$$
\begin{cases}B_{2}\left[u_{1}\right] & =B_{2}[u] \tag{1}\\ B_{1}\left[u_{2}\right] & =B_{1}[u]\end{cases}
$$

where u is known (measurements on Γ)

Neglecting the error term:

$$
B_{j}\left[u_{k}\right]=B_{j}\left[u_{k}+u_{j}\right]=B_{j}[u], \quad j=1,2, \quad k \neq j
$$

Recover u_{1} and u_{2} by solving:

$$
\left\{\begin{array}{lll}
B_{2}\left[u_{1}\right] & =B_{2}[u] \tag{1}\\
B_{1}\left[u_{2}\right] & =B_{1}[u]
\end{array}\right.
$$

where u is known (measurements on Γ)
Difficulty: integration of partial differential equation (1)-(2) on the submanifold Γ

- Find adequate initial and boundary conditions
- Change of coordinates from $\left(r_{k}, \theta_{k}, \varphi_{k}\right)$ to $\left(r_{j}, \theta_{j}, \varphi_{j}\right)$
- Remove normal/radial derivatives (equation on Γ involving only $\left.\left(t, \theta_{j}, \varphi_{j}\right)\right)$

Wave splitting in the two-space dimensional case

 Change of coordinatesIn 2D, Bayliss-Turkel first order absorbing boundary condition

$$
B_{j}[u]=\frac{1}{c} \frac{\partial u}{\partial t}+\frac{\partial u}{\partial r_{j}}+\frac{u}{2 r_{j}}
$$

For simplicity, let $\Gamma:=\Gamma_{1} \cup \Gamma_{2}$ with

$$
\Gamma_{k}=\text { semi-circle centered at } C_{k}
$$

Wave splitting in the two-space dimensional case

E.g. to recover u_{1} on Γ_{1} (semi-circle centered at C_{1})

$$
\begin{aligned}
B_{2}\left[u_{1}\right] & =B_{2}[u] \\
\frac{1}{c} \frac{\partial u_{1}}{\partial t}+\frac{\partial u_{1}}{\partial r_{2}}+\frac{u_{1}}{2 r_{2}} & =\frac{1}{c} \frac{\partial u}{\partial t}+\frac{\partial u}{\partial r_{2}}+\frac{u}{2 r_{2}}
\end{aligned}
$$

How to solve this PDE for u_{1} ?

- need initial and boundary conditions
- remove the radial derivative! we solve on Γ_{1}
- derivatives in $\left(r_{2}, \theta_{2}\right)$, when domain in $\left(r_{1}, \theta_{1}\right)$
\Longrightarrow rewrite the PDE using only $\frac{\partial}{\partial t}, \frac{\partial}{\partial \theta_{1}}$ and $0^{\text {th }}$-order term

Wave splitting in the two-space dimensional case

 Change of coordinatesFinally: PDE to recover $f_{1}=\sqrt{r_{1}} u_{1}$ on $\Gamma_{1}, t>0$

$$
\left(\alpha_{1}\left(\theta_{1}\right) \frac{\partial}{\partial t}+\beta_{1}\left(\theta_{1}\right) \frac{\partial}{\partial \theta_{1}}+\gamma_{1}\left(\theta_{1}\right)\right) f_{1}=\left(\frac{1}{c} \frac{\partial}{\partial t}+\frac{\partial}{\partial r_{2}}+\frac{1}{2 r_{2}}\right) u
$$

with

$$
\begin{aligned}
\alpha_{1}\left(\theta_{1}\right) & =\frac{\sqrt{r_{1}^{2}+\ell^{2}-2 r_{1} \ell \cos \left(\theta_{1}\right)}-r_{1}+\ell \cos \left(\theta_{1}\right)}{c \sqrt{r_{1}} \sqrt{r_{1}^{2}+\ell^{2}-2 r_{1} \ell \cos \left(\theta_{1}\right)}}, \\
\beta_{1}\left(\theta_{1}\right) & =\frac{\ell \sin \left(\theta_{1}\right)}{r_{1} \sqrt{r_{1}} \sqrt{r_{1}^{2}+\ell^{2}-2 r_{1} \ell \cos \left(\theta_{1}\right)}}, \\
\gamma_{1}\left(\theta_{1}\right) & =\frac{\ell \cos \left(\theta_{1}\right)}{2 r_{1} \sqrt{r_{1}} \sqrt{r_{1}^{2}+\ell^{2}-2 r_{1} \ell \cos \left(\theta_{1}\right)}},
\end{aligned}
$$

and ℓ the signed distance between C_{1} and C_{2}.

We want to recover $f_{1}=\sqrt{r_{1}} u_{1}$ which satisfies on $\Gamma, t>0$

$$
\left(\alpha_{1}\left(\theta_{1}\right) \frac{\partial}{\partial t}+\beta_{1}\left(\theta_{1}\right) \frac{\partial}{\partial \theta_{1}}+\gamma_{1}\left(\theta_{1}\right)\right) f_{1}=\left(\frac{1}{c} \frac{\partial}{\partial t}+\frac{\partial}{\partial r_{2}}+\frac{1}{2 r_{2}}\right) u
$$

Initial condition?

At $t=0$, no signal in Ω : all sources in $S_{1} \cup S_{2}$
$\Longrightarrow f_{1}$ and f_{2} vanish in Ω, thus on $\Gamma_{1} \cup \Gamma_{2}$
the initial condition is:

$$
f_{1}=0, \quad \text { on } \Gamma_{1} \text {, at } t=0 .
$$

Wave splitting in the two-space dimensional case

Hyperbolic PDE

$$
\left(\alpha_{1}\left(\theta_{1}\right) \frac{\partial}{\partial t}+\beta_{1}\left(\theta_{1}\right) \frac{\partial}{\partial \theta_{1}}+\gamma_{1}\left(\theta_{1}\right)\right) f_{1}=\left(\frac{1}{c} \frac{\partial}{\partial t}+\frac{\partial}{\partial r_{2}}+\frac{1}{2 r_{2}}\right) u
$$

trivial at $\theta_{1}=0$ or π modulo 2π, since $\alpha_{1}\left(\theta_{1}\right)=0, \beta_{1}\left(\theta_{1}\right)=0$
\Longrightarrow Dirichlet boundary condition: $f_{1}=\frac{B_{2}[u]}{\gamma_{1}(0)} \quad$ at $\theta_{1}=0$

Reconstruction of $f_{1}\left(\right.$ resp. $\left.f_{2}\right)$ on $\Gamma_{1}\left(\right.$ resp. $\left.\Gamma_{2}\right)$

by subtraction, $f_{2}\left(\right.$ resp. $\left.f_{1}\right)$ can be reconstructed on $\Gamma_{1}\left(\right.$ resp. $\left.\Gamma_{2}\right)$

Numerical results in the 2D－case

At location 2

Time history of wave fields at one location：two purely radial wave fields generated by point－sources

Numerical results in the 2D－case

Time history of wave fields at one location：incident wave impinges on a sound－soft inclusion

At location 1

Conclusion

New partial differential equation

- on a submanifold 「
- local in space and time
- in the time-dependent domain

Method extendable to:

- 2 or more scatterers
- vector-valued wave equations from electromagnetics and elasticity
- improved accuracy with higher order absorbing boundary condition (more terms in the progressive wave expansion)
M.J. Grote, M. Kray, F. Nataf and F. Assous.

Wave splitting for time-dependent scattered field separation. C. R. Acad. Sci. Paris, Serie I (2015)

[^0]: ${ }^{1}$ M. J. Grote and C. Kirsch. Nonreflecting boundary condition for time-dependent multiple scattering. J. Comput. Phys., 221(1):41-67, 2007.

[^1]: ${ }^{2}$ A. Bayliss and E. Turkel. Radiation boundary conditions for wave-like equations. Comm. Pure Appl. Math., 33(6):707-725, 1980.

