
Obtaining coarse-grained models from multiscale data

Sebastian Krumscheid

CSQI – MATHICSE, École Polytechnique Fédérale de Lausanne

April 17, 2015

joint work with G. A. Pavliotis (IC, Mathematics) and S. Kalliadasis (IC, Chemical Engineering)

Swiss Numerical Analysis Day 2015, Geneva 1 / 14



Data-driven coarse-graining
What are we interested in?

Many Dynamical systems in the natural sciences are characterised by
the presence of processes that occur across several length and time
scales, e.g. atmosphere-ocean system, biological systems, materials
and molecular dynamics, etc.

Full multiscale system is cumbersome to analyse: high-dimensional,
nonlinear coupling, small scale vs. large scale effects, etc.
Sometimes, it is not even fully known.

Commonly, only the evolution of a few selected degrees of freedom is
of main interest, which are often observable.

Idea: Data-Driven Coarse-Graining
Use data (observations) of full system to find an adequate simplified
low-dimensional coarse-grained model that retains the essential dynamic
characteristics of the degrees of freedom of interest.
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Data-driven coarse-graining: A motivating example
The paleoclimatic record

Celebrated (partial) record of δ18O (≈ proxy for temperature) from the
NGRIP ice core during last glacial period [Anderson et al. Nature, 2004]
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Temperature is a single degree of freedom of an arguably
high-dimensional climate model.
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Inference for coarse-grained dynamical systems
Abstract framework

Consider a dynamical system Zε evolving according to
dZε

dt
= F (Zε) , Zε(t) ∈ Z

Decompose the state space into subspaces X and Y :

Z = X ⊕ Y , dim(X )� dim(Y)

X : state space of degrees of freedom of interest

Data-Driven Coarse-Graining
Use data Xε = PXZ

ε to find a stochastic coarse-grained system

dX = f(X; θ) dt+ g(X; θ) dWt , X(t) ∈ X

such that X ≈ Xε (in an appropriate sense).

But ...
Inverse problem for θ based on Xε = PXZ

ε not straightforward!
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Failure of classic approaches: Multiscale diffusions
A toy example: homogenization [Pavliotis, Stuart. Springer. 2008]

Dynamical System

dXε =

(
AXε +

√
σ

ε
Y ε

)
dt ,

dY ε = − 1

ε2
Y ε dt+

√
2

ε
dVt

Coarse-Grained System

dX = AX dt+
√

2σ dWt

−A = σ = 1/2 , ε = 0.1
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Coarse-grained system rigorously obtained via Homogenization
theory
Commonly used parametric estimators for SDEs are MLE and QVP:

ÂMLE = −0.026 6≈ −0.5 = A , σ̂QVP = 0.026 6≈ 0.5 = σ .

Swiss Numerical Analysis Day 2015, Geneva 5 / 14



Failure for multiscale systems on the diffusive time scale
[Pavliotis, Stuart. 2007], [Papavasiliou, Pavliotis, Stuart. 2009], [Azencott, Beri, Timofeyev. 2010]

Standard estimators for coarse-grained system based on observations
from full multiscale system are (asymptotically) biased

For the toy example: limε→0 limT→∞ ÂMLE(ε, T ) = A+ σ

General abstract nonsense or practically relevant?
A practitioner believes the “true” coarse-grained model is

dX = f(X) dt+ g(X) dWt

An estimator is derived from this model: E(X)

One does not observe X, but a perturbed version Xε instead.

Is the estimator robust w.r.t. the perturbation? Does it hold that

E(Xε)→ E(X) , if Xε → X as ε→ 0 ?
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Derivation of general purpose estimator
Let Xξ denote the solution to coarse-grained Itô SDE

dX = f(X) dt+ g(X) dWt , X(0) = ξ ∈ Rd ,

with f : Rd → Rd, g : Rd → Rd×r

Both f and G := ggT ∈ Rd×d depend on unknown parameters
θ ≡ (θ1, . . . , θn)T ∈ Θ ⊂ Rn:

f(x) ≡ f(x; θ) :=

n∑
j=1

θjfj(x) and G(x) ≡ G(x; θ) :=

n∑
j=1

θjGj(x)

For any function φ ∈ C2
b (Rd) and any t > 0, Itô’s formula implies

E
(
φ
(
Xξ(t)

))
− φ(ξ) =

n∑
j=1

θj

∫ t

0
E
(

(Ljφ)
(
Xξ(s)

))
ds

with generators Ljφ = fj · ∇φ+ 1
2Gj : ∇∇φ
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This can be written as

a(ξ)T θ = bc(ξ) ,

bc(ξ) := E
(
φ
(
Xξ(t)

))
− φ(ξ) and a(ξ) :=

(∫ t
0
E
(
(Ljφ)

(
Xξ(s)

))
ds
)
1≤j≤n

∈ Rn

Equation a(ξ)T θ = bc(ξ) is ill-posed

Since the equation is valid for any trial point ξ, we can overcome this
shortcoming by considering multiple trial points (ξi)1≤i≤m, thus

Aθ = b ,

with A :=
(
a(ξi)

T
)
1≤i≤m ∈ Rm×n and b :=

(
bc(ξi)

)
1≤i≤m ∈ Rm

Define estimator as least-squares solutions

θ̂ := arg min
x∈S

‖x‖22 , S :=
{
x ∈ Rn : ‖Ax− b‖22 = min

}
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The toy example revisited: Does it work at all?

Dynamical System

dXε =

(
AXε +

√
σ

ε
Y ε

)
dt ,

dY ε = − 1

ε2
Y ε dt+

√
2

ε
dVt

Coarse-Grained System

dX = AX dt+
√

2σ dWt

−A = σ = 1/2 , θ = (A, σ) , ε = 0.1
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Observations
consistent parameter estimation seems possible

sufficiently large t removes multiscale bias:

multiscale bias ≈ σ
(
|A|+ t−1

)
ε2 +O(ε4)
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Just lucky? A more complex system.

Dynamical System

dXε =
(
Y ε

ε

√
σa + σb(Xε)2 + (A− σb)Xε −B(Xε)3

)
dt , Y ε as before

Coarse-Grained System
dX = (AX −BX3) dt+

√
2(σa + σbX2) dWt

True values:
θ = (A,B, σa, σb) with

A = 1 , σa = 0.49

B = 2 , σb = 0.81

ε = 0.1
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What about rigorous results? Not just lucky! [K. arXiv, 2014]

Robustness

Assumptions

A1 Xε ⇒ X as ε→ 0 in C([0, T ],Rd)
A2 Sampling errors in discretely sampled observations vanish as h→ 0

A3 Error of approximating time integrals by numerical quadrature
vanishes as δ → 0

A4 Error of approximating expectations by finite averages vanishes as
N →∞

Proposition (Robustness)
Under assumptions A1–A4, the estimator is robust with respect to
multiscale perturbations, in the sense that

lim
ε→0

θ̂(Xε) = θ , a.s.

for any t > 0 and φ ∈ C2
b (Rd).
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Many more Examples [K., Pavliotis, Kalliadasis. MMS, 2013], [Kalliadasis, K., Pavliotis. arXiv , 2014]

Theory covers problem of obtaining coarse-grained models for:

multiscale problems with
multidimensional coarse-grained
models

stochastic PDEs
deterministic systems with
stochastic limit:

I Kac–Zwanzig models: “particle in
a heat bath”

I deterministic model of Brownian
motion

I fast deterministic chaos
I . . .

etc.
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Brownian Motion in two-scale
Potential x 7→ V (x, x/ε)

V (x, x/ε)
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Many more Examples [K., Pavliotis, Kalliadasis. MMS, 2013], [Kalliadasis, K., Pavliotis. arXiv , 2014]

Theory covers problem of obtaining coarse-grained models for:

multiscale problems with
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Burgers equation in a small noise
regime:

duε =
(

(∂2x + 1)uε + 1
2∂xuε

2

+ ε2νuε

)
dt+ εQ dWt

Study solutions of O(ε) on times
scales O(1/ε2): diffusive
rescaling vε s.t. εvε(ε2t) = uε(t)
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Kac–Zwanzig model:
A distinguished particle moves in
a potential V and interacts with
M heat bath particles:

H =
1

2
P 2 + V (Q) +

1

2

M∑
j=1

pj
2

mj

+
1

2

M∑
j=1

kj(qj −Q)2
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Data-driven coarse-graining: A real-world application
The paleoclimatic record revisited [K., Pradas, Kalliadasis, Pavliotis. 2015]

A robust estimation procedure provides more confidence when
studying real-world phenomena based on data that may be prone to
effects from multiple scales.
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Example of model-based analysis: average time between
Dansgaard–Oeschger events:

I τDO = average time to exit from warm state + average time to exit from
cold state : model M1 τDO ≈ 1.60 ky and model M2 τDO ≈ 1.51 ky

I Previously reported value in the literature (various physical arguments
and/or complex models): 1.5 ky.
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A general purpose procedure for data-driven
coarse-graining

Take Home Message
Multiscale effects in data can result in inconsistent (i.e. false)
parametric estimators for coarse-grained models,

Using a robust scheme however, it is possible to obtain simplified
low-dimensional models from available data.

Question: Can you rule out the presence of multiscale effects in your
data? If not, then use classic parametric estimators carefully.

Generalisations and Extensions
Additional data contamination by noise, e.g. via filtering techniques

Passage to fully nonparametric setting (X)

Applications in (computational) molecular dynamics

Is a Bayesian approach helpful?

Swiss Numerical Analysis Day 2015, Geneva 14 / 14


	Title Page
	Data-Driven Coarse-Graining
	Failure of MLE and QVP

	Estimator
	Numerics
	Fast OU - OU
	Fast OU - LS4

	Error Analysis
	More Examples - List
	Data-Driven Coarse-Graining in Action
	Conclusion

