Dynamical low-rank approximation

Christian Lubich
Univ. Tübingen

Genève, Swiss Numerical Analysis Day, 17 April 2015

Coauthors

- Othmar Koch 2007, 2010
- Achim Nonnenmacher 2008
- Dajana Conte 2010
- Thorsten Rohwedder \& Reinhold Schneider 2013
- Bart Vandereycken 2013, 2015
- Ivan Oseledets 2014, 2015
- Jutho Haegeman \& Frank Verstraete $2014^{\text {pre }}$
- Emil Kieri \& Hanna Walach 2015 ${ }^{\text {pre }}$

Motivation: Data reduction / model reduction

- Encyclopedia: term-document matrix latent semantic indexing: low-rank approximation by a truncated SVD: $\quad A \approx \sum_{j=1}^{r} \sigma_{j} u_{j} v_{j}^{\top}$ time-dependent encyclopedia? (à la Wikipedia)
- Multi-particle quantum dynamics time-dependent Schrödinger equation $i \frac{\partial \psi}{\partial t}=H \psi$ for the wavefunction $\psi=\psi\left(x_{1}, \ldots, x_{N}, t\right)$

MCTDH: reduced model via low-rank tensor approximation

Outline

Dynamical low-rank approximation

Differential equations

Splitting integrator

Robustness to small singular values

Extensions to tensors

Outline

Dynamical low-rank approximation

Differential equations

Splitting integrator

Robustness to small singular values

Extensions to tensors

Best low-rank approximation

given a matrix $A \in \mathbb{R}^{m \times n}$ (huge m, n)
best approximation to A of rank r : matrix X in the manifold \mathcal{M}_{r} of rank- r matrices with

$$
X \in \mathcal{M}_{r} \quad \text { such that } \quad\|X-A\|=\min !
$$

Frobenius norm: problem solved by truncated SVD

$$
X=U \Sigma_{r} V^{T}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}
$$

Best low-rank approximation

given matrices $A(t) \in \mathbb{R}^{m \times n}$ for $0 \leq t \leq T$ (huge m, n)
best approximation to $A(t)$ of rank r : matrix $X(t)$ in the manifold \mathcal{M}_{r} of rank- r matrices with
$X(t) \in \mathcal{M}_{r} \quad$ such that $\quad\|X(t)-A(t)\|=\min !$

Frobenius norm: problem solved by truncated SVD, but expensive!

Need an updating technique

Dynamical low-rank approximation

$$
X(t) \in \mathcal{M}_{r} \quad \text { such that } \quad\|X(t)-A(t)\|=\min !
$$

replaced by initial value problem of differential equations on \mathcal{M}_{r} :
$\dot{Y}(t) \in T_{Y(t)} \mathcal{M}_{r} \quad$ such that $\quad\|\dot{Y}(t)-\dot{A}(t)\|=\min !$

Motivation

$$
\dot{Y}(t) \in T_{Y(t)} \mathcal{M}_{r} \quad \text { such that } \quad\|\dot{Y}(t)-\dot{A}(t)\|=\min !
$$

- use sparse increments $\dot{A}(t)$ instead of the complete data matrix $A(t)$: time-continuous updating
- linear projection onto the tangent space instead of a nonlinear, nonconvex minimization problem
- extends to matrix differential equations $\dot{A}=F(A)$: minimum defect approximation

$$
\dot{Y}(t) \in T_{Y(t)} \mathcal{M}_{r} \quad \text { such that } \quad\|\dot{Y}(t)-F(Y(t))\|=\min !
$$

Outline

Dynamical low-rank approximation

Differential equations

Splitting integrator

Robustness to small singular values

Extensions to tensors

Non-unique factorisation of rank- r matrices

$$
Y=U S V^{\top}
$$

with invertible $S \in \mathbb{R}^{r \times r}$
$U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$ with orthonormal columns

SVD has diagonal S, is not assumed here!

Unique decomposition in the tangent space

non-unique decomposition $Y=U S V^{T} \in \mathcal{M}_{r}$ tangent matrix $\dot{Y} \in T_{Y} \mathcal{M}_{r}$:

$$
\dot{Y}=\dot{U} S V^{T}+U \dot{S} V^{T}+U S \dot{V}^{T}
$$

with $\dot{S} \in \mathbb{R}^{r \times r}$ and skew-symmetric $U^{T} \dot{U}, V^{T} \dot{V}$ $\dot{S}, \dot{U}, \dot{V}$ are uniquely determined by \dot{Y} and S, U, V under the orthogonality constraints

$$
U^{T} \dot{U}=0, \quad V^{T} \dot{V}=0
$$

gauge conditions enforce uniqueness

Equivalent formulations of dynamical low-rank approximation

- $\dot{Y} \in T_{Y} \mathcal{M}_{r} \quad$ such that $\quad\|\dot{Y}-\dot{A}\|=\min !$
- $\langle\dot{Y}-\dot{A}, Z\rangle=0 \quad$ for all $Z \in T_{Y} \mathcal{M}_{r}$
- $\dot{Y}=P(Y) \dot{A}$ with $P(Y)=$ orth. projection onto $T_{Y} \mathcal{M}_{r}$

ODEs for dynamical low-rank approximation

$$
Y=U S V^{T}
$$

with

$$
\begin{aligned}
& \dot{U}=\left(I_{m}-U U^{T}\right) \dot{A} V S^{-1} \\
& \dot{V}=\left(I_{n}-V V^{T}\right) \dot{A}^{T} U S^{-T} \\
& \dot{S}=U^{T} \dot{A} V
\end{aligned}
$$

Koch \& L. 2007
cf. ODEs for SVD (Wright 1992 and Dieci \& Eirola 1999) but here, no singularities arise for coalescing singular values

$$
\dot{A}=F(A)
$$

solution A approximated by $Y=U S V^{T}$ with

$$
\begin{aligned}
& \dot{U}=\left(I_{m}-U U^{T}\right) F(Y) V S^{-1} \\
& \dot{V}=\left(I_{n}-V V^{T}\right) F(Y)^{T} U S^{-T} \\
& \dot{S}=U^{T} F(Y) V
\end{aligned}
$$

minimum defect: $\dot{Y} \in T_{Y} \mathcal{M}_{r}$ with $\|\dot{Y}-F(Y)\|=\min$!

Outline

Dynamical low-rank approximation

Differential equations

Splitting integrator

Robustness to small singular values

Extensions to tensors

Equivalent formulations of
dynamical low-rank approximation

- $\dot{Y} \in T_{Y} \mathcal{M}_{r} \quad$ such that $\quad\|\dot{Y}-\dot{A}\|=\min !$
- $\langle\dot{Y}-\dot{A}, Z\rangle=0 \quad$ for all $Z \in T_{Y} \mathcal{M}_{r}$
- $\dot{Y}=P(Y) \dot{A}$ with $P(Y)=$ orth. projection onto $T_{Y} \mathcal{M}_{r}$:

$$
P(Y) \dot{A}=\dot{A} P_{\mathcal{R}\left(Y^{\top}\right)}-P_{\mathcal{R}(Y)} \dot{A} P_{\mathcal{R}\left(Y^{\top}\right)}+P_{\mathcal{R}(Y)} \dot{A}
$$

Idea: split the projection \rightarrow the integrator (wait and see!)
L. \& Oseledets 2014

Splitting integrator, abstract form

1. Solve the differential equation

$$
\dot{Y}_{I}=\dot{A} P_{\mathcal{R}\left(Y_{l}^{T}\right)}
$$

with initial value $Y_{l}\left(t_{0}\right)=Y_{0}$ for $t_{0} \leq t \leq t_{1}$.
2. Solve

$$
\dot{Y}_{\| I}=-P_{\mathcal{R}\left(Y_{\| I}\right)} \dot{A} P_{\mathcal{R}\left(Y_{\| I}^{T}\right)}
$$

with initial value $Y_{I I}\left(t_{0}\right)=Y_{l}\left(t_{1}\right)$ for $t_{0} \leq t \leq t_{1}$.
3. Solve

$$
\dot{Y}_{I I I}=P_{\mathcal{R}\left(Y_{I I I}\right)} \dot{A}
$$

with initial value $Y_{I I I}\left(t_{0}\right)=Y_{I I}\left(t_{1}\right)$ for $t_{0} \leq t \leq t_{1}$.
Finally, take $Y_{1}=Y_{I I I}\left(t_{1}\right)$ as an approximation to $Y\left(t_{1}\right)$.

Solving the split differential equations

The solution of 1 . is given by

$$
\begin{gathered}
Y_{I}=U_{I} S_{I} V_{l}^{T} \quad \text { with } \quad\left(U_{I} S_{I}\right)=\dot{A} V_{l}, \quad \dot{V}_{I}=0: \\
U_{l}(t) S_{l}(t)=\left(A(t)-A\left(t_{0}\right)\right) V_{l}\left(t_{0}\right), \quad V_{l}(t)=V_{l}\left(t_{0}\right)
\end{gathered}
$$

and similarly for 2 . and 3 .

Splitting integrator, practical form

Start from $Y_{0}=U_{0} S_{0} V_{0}^{T} \in \mathcal{M}_{r}$.

1. With the increment $\Delta A=A\left(t_{1}\right)-A\left(t_{0}\right)$, set

$$
K_{1}=U_{0} S_{0}+\Delta A V_{0}
$$

and orthogonalize:

$$
K_{1}=U_{1} \widetilde{S}_{1},
$$

where $U_{1} \in \mathbb{R}^{m \times r}$ has orthonormal columns, and $\widetilde{S}_{1} \in \mathbb{R}^{r \times r}$.
2. Set $\widetilde{S}_{0}=\widetilde{S}_{1}-U_{1}^{T} \Delta A V_{0}$.
3. Set $L_{1}=V_{0} \widetilde{S}_{0}^{T}+\Delta A^{T} U_{1}$ and orthogonalize:

$$
L_{1}=V_{1} S_{1}^{T}
$$

where $V_{1} \in \mathbb{R}^{n \times r}$ has orthonormal columns, and $S_{1} \in \mathbb{R}^{r \times r}$.
The algorithm computes a factorization of the rank-r matrix

$$
Y_{1}=U_{1} S_{1} V_{1}^{T} \approx Y\left(t_{1}\right)
$$

Splitting integrator, cont.

- use symmetrized variant (Strang splitting)
- for a matrix differential equation $\dot{A}=F(A)$: in substep 1. solve

$$
\dot{K}=F\left(K V_{0}^{T}\right) V_{0}, \quad K\left(t_{0}\right)=U_{0} S_{0}
$$

by a step of a numerical method (Runge-Kutta etc.), and similarly in substeps 2 . and 3.

Outline

Dynamical low-rank approximation

Differential equations

Splitting integrator

Robustness to small singular values

Extensions to tensors

ODEs for dynamical low-rank approximation

$$
Y=U S V^{T}
$$

with

$$
\begin{aligned}
& \dot{U}=\left(I_{m}-U U^{T}\right) \dot{A} V S^{-1} \\
& \dot{V}=\left(I_{n}-V V^{T}\right) \dot{A}^{T} U S^{-T} \\
& \dot{S}=U^{T} \dot{A} V
\end{aligned}
$$

What if S is ill-conditioned? (effective rank smaller than r)

Numerical experiment

ε-perturbed rank-10 matrices for $t=0,0.2, \ldots, 1, \varepsilon=1 \mathrm{e}-3$.

Table: Approximation rank $r=10$.

ε	$\\|X-A\\|$	$\\|Y-A\\|$	$\left\\|S^{-1}\right\\|$
$1 \mathrm{e}-1$	$7.3762 \mathrm{e}+00$	$1.3478 \mathrm{e}+01$	$7.9878 \mathrm{e}-01$
$1 \mathrm{e}-2$	$9.3381 \mathrm{e}-01$	$5.2203 \mathrm{e}+00$	$1.4487 \mathrm{e}+00$
$1 \mathrm{e}-3$	$1.8293 \mathrm{e}-01$	$2.1549 \mathrm{e}-01$	$2.6232 \mathrm{e}+00$
$1 \mathrm{e}-4$	$1.8310 \mathrm{e}-02$	$2.1550 \mathrm{e}-02$	$2.6232 \mathrm{e}+00$

Table: Approximation rank $r=20$.

ε	$\\|X-A\\|$	$\\|Y-A\\|$	$\left\\|S^{-1}\right\\|$
$1 \mathrm{e}-1$	$6.0335 \mathrm{e}+00$	$1.3094 \mathrm{e}+01$	$1.5749 \mathrm{e}+00$
$1 \mathrm{e}-2$	$6.1246 \mathrm{e}-01$	$1.0885 \mathrm{e}+00$	$1.3569 \mathrm{e}+01$
$1 \mathrm{e}-3$	$6.1280 \mathrm{e}-02$	$1.0354 \mathrm{e}-01$	$1.3474 \mathrm{e}+02$
$1 \mathrm{e}-4$	$6.1282 \mathrm{e}-03$	$1.0298 \mathrm{e}-02$	$1.2940 \mathrm{e}+03$

Robustness under over-approximation

Theorem

- $A(t)=X_{q}(t)+E(t)$ with $\|E(t)\| \leq \varepsilon_{0},\|\dot{E}(t)\| \leq \varepsilon_{1}$ for $X_{q}(t) \in \mathcal{M}_{q}$ with $q \leq r$
- $\sigma_{q}(A(t)) \geq \rho>0$
- $\|\dot{A}(t)\| \leq \mu$
- $Y(0)=X_{r}(0) \in \mathcal{M}_{r}$

Then,

$$
\left\|Y(t)-X_{q}(t)\right\| \leq \varepsilon_{0}+6 t \varepsilon_{1} \quad \text { for } t \leq \frac{\rho}{16 \mu}
$$

good rank- r approximation even in case of effective rank $q<r$

Numerical experiment: integrator errors $\left(h=10^{-3}\right)$

	p	Appr. err.
Midpoint	2.0023	0.2200
KLS	1.0307	1.8133
KLS(symm)	1.8226	0.2215
KSL	1.0089	0.2188
KSL(symm)	2.005	0.2195

Table: $\varepsilon=10^{-3}, r=10$

	p	Appr. err.
Midpoint	0.0001	0.1006
KLS	0.8154	1.4224
KLS(symm)	1.4911	0.3142
KSL	1.0354	0.0913
KSL(symm)	1.9929	0.0913

$$
\text { Table: } \varepsilon=10^{-3}, r=20
$$

An exactness result for the splitting method

Theorem
If $A(t)$ has rank at most r, then the splitting integrator is exact:

$$
Y_{1}=A\left(t_{1}\right)
$$

Ordering of the splitting is essential! (KSL, not KLS)

$$
\dot{A}=F(t, A), \quad A\left(t_{0}\right)=Y_{0} \in \mathcal{M}_{r}
$$

- F is locally Lipschitz-continuous
- $\|(I-P(Y)) F(t, Y)\| \leq \varepsilon$ for all $Y \in \mathcal{M}_{r}$.
$Y_{n} \in \mathcal{M}_{r}$ result of the projector-splitting integrator after n steps
Theorem

$$
\left\|Y_{n}-A\left(t_{n}\right)\right\| \leq c_{1} \varepsilon+c_{2} h \quad \text { for } t_{n} \leq T
$$

where c_{1}, c_{2} depend only on the local Lipschitz constant and bound of F, and on T.

Kieri, L. \& Walach 2015 ${ }^{\text {pre }}$

Remarks on the proof

The method splits $P(Y)=P_{I}(Y)-P_{I I}(Y)+P_{I I I}(Y)$ in

$$
\dot{Y}=P(Y) F(t, Y)
$$

Difficulty: cannot use the Lipschitz continuity of the tangent space projection $P(\cdot)$ and its subprojections, because the Lipschitz constants become large for small singular values

Rescue:

- use the previous exactness result
- use the conservation of the subprojections in the substeps

Outline

Dynamical low-rank approximation

Differential equations

Splitting integrator

Robustness to small singular values

Extensions to tensors

Tensors in Tucker format

Approximation of time-dependent tensors

$$
A(t) \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}} \quad \text { with entries } \quad A\left(k_{1}, \ldots, k_{d} ; t\right)
$$

by tensors $Y(t) \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$ of the form, with $r_{i} \ll n_{i}$,

$$
Y\left(k_{1}, \ldots, k_{d} ; t\right)=\sum_{j_{1}=1}^{r_{1}} \cdots \sum_{j_{d}=1}^{r_{d}} c_{j_{1}, \ldots, j_{d}}(t) u_{j_{1}}^{(1)}\left(k_{1} ; t\right) \ldots u_{j_{d}}^{(d)}\left(k_{d} ; t\right)
$$

Tucker format of multilinear rank $r=\left(r_{1}, \ldots, r_{d}\right)$:

- Each 1-mode matrix unfolding of the core tensor has full rank.
- The vectors $u_{1}^{(i)}(t), \ldots, u_{r_{i}}^{(i)}(t) \in \mathbb{R}^{n_{i}}$ are orthonormal.

Dynamical tensor approximation: Koch \& L. 2010
Projector-splitting integrator: L. 2015 ${ }^{\text {pre }}$

Tensor trains / matrix product states

Non-commutative separation of variables:

$$
Y\left(k_{1}, \ldots, k_{d}\right)=G_{1}\left(k_{1}\right) \ldots G_{d}\left(k_{d}\right)
$$

where the $G\left(k_{i}\right)$ are $r_{i-1} \times r_{i}$ matrices, with $r_{0}=r_{d}=1$.
Attractive because of low data requirement: $d K r^{2}$

Matrix product states:
Tensor trains:
Manifold structure:
e.g., Verstraete, Murg \& Cirac 2008 Oseledets 2011
Holtz, Rohwedder \& Schneider 2012 Uschmajew \& Vandereycken 2013
Dynamical approximation in the tensor train format:
L., Rohwedder, Schneider, Vandereycken 2013

Projector-splitting integrator: L., Oseledets \& Vandereycken 2015 in physics context: Haegeman, L., O., V. \& Verstraete 2014 ${ }^{\text {pre }}$ Error analysis: Kieri, L. \& Walach 2015 ${ }^{\text {pre }}$

Outline

Dynamical low-rank approximation

Differential equations

Splitting integrator

Robustness to small singular values

Extensions to tensors

Review

C.L., Low-rank dynamics
in Extraction of Quantifiable Information from Complex Systems (S. Dahlke et al., eds.), Springer Lecture Notes Comput. Sci. Eng. 102, 2014.
na.uni-tuebingen.de

