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The uncertainty quantification problem

math. model
P(state vars.) = 0

→ quantity of
interest u

The parameters y of the model may be affected by uncertainty
(experimental measures, limited knowledge on system properties).

y can be modeled as a random vector with N components, taking
values in Γ ⊆ RN , with joint probability density function %(y).

Therefore u is a random function, u(y).

Goal: Compute statistical quantities for u, i.e. assess how the uncertainty
on the parameters reflects on u: E[u], Var[u], Pr(u > u0).

Method: Use sparse grids collocation to exploit regularity of u(y).
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Some examples on what can be done

Diffusion problem with random inclusions (“the cookies problem”)
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Some examples on what can be done

Steady Navier-Stokes with uncertain Reynolds and forcing term
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The Darcy problem

Find a pressure p : D → R, such that{
−∇ · (eγ∇p) = f in D,

+B.C . (see plot on the right).

u = outward flux from the right-hand boundary.

p=1 p=0

( e
γ
 ∇ p ) ⋅  n = 0

( e
γ
 ∇ p ) ⋅  n = 0

D

the log-permeability field γ is not constant in space (see
right) but in practice we know its value only at log-points
(drill locations). How to fill the gaps?

⇓

model γ as a random field
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Random fields

instead of γ = γ(x), let γ = γ(x, y) with yn random variables, y ∈ Γ:

I for each realization γ(·, y) is a function in L∞(D)
I for each physical point γ(x, ·) is a random variable

a covariance function describes the interaction between any couple of points,

e.g. Cov [x0, x1] = exp
(
−‖x0−x1‖2

L2
C

)
represented by a (truncated) Karhunen-Loève expansion

γ(x, y) = σ

N∑
k=1

ykγkφk(x), yi ∼ N (0, 1) i.i.d.⇒

Γ = RN

%(y) = 1√
(2π)N

e−
∑N

n=1 y2n
2

Find a pressure p(x, y) : D × Γ→ R, such that %-a.e.:{
−∇ · (eγ(x,y)∇p(x, y)) = f (x) x ∈ D,

+B.C .

u(y) = outward flux is a random fun.→ approximate e.g. E[u]
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What strategy?

Problem: we may need tens-hundreds of random variables to represent
accurately the field! How can we tackle this?

Monte Carlo

Generate a sample {yi}Mi=1

E[u] ≈ uMC =
1

M

∑
i

u(yi )

accuracy O(1/
√

M). Slow but
independent of N (no “curse of
dimensionality”)

Polynomial approximation

The map y→ u(x, y) is
actually very smooth

Approximate it by a polynomial
surrogate model,

u(y) ≈ upol =
∑

i uiφi (y)

E[upol ] by post-process

convergence of ‖u − upol‖ may
deteriorate with N

In this talk: Polynomial approximation by adaptive sparse grids (reduced “curse
of dimensionality”) + Monte Carlo with control variate
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Sparse grid approximation of u(y)

Let i ∈ NN
+ and denote by T m(i)[u](y) the tensor Lagrangian interpolant of

u(y) over Γ with m(i1)×m(i1)× . . .m(iN) points.

A sparse grid approximation is a linear combination of tensor interpolants:

SI [u](y) :=
∑
i∈I

ciT m(i)[u](y), E[u] ≈ QI [u] :=
∑

yi

ωiu(yi )
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SI [u](y) = T [15 1][u](y) + T [1 15][u](y) + T [5 5][u](y) · · ·

In practice, solve the Darcy problem for each yi in the grid and combine
them according to the formula above
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Sparse grid approximation of u(y)

Let i ∈ NN
+ and denote by T m(i)[u](y) the tensor Lagrangian interpolant of

u(y) over Γ with m(i1)×m(i1)× . . .m(iN) points.

A sparse grid approximation is a linear combination of tensor interpolants:

SI [u](y) :=
∑
i∈I

ciT m(i)[u](y), E[u] ≈ QI [u] :=
∑

yi

ωiu(yi )

Sparse grids idea: cheaper than full tensor grids, but similar
accuracy

Univariate points: yi ∼ N (0, 1)→ Gauss–Hermite, Genz–Keister,
gen. Leja

The efficiency of the sparse grids depends on I.

Admissibility condition for I: ∀ i ∈ I, i− ej ∈ I if ij > 1.

The coefficients ci are uniquely defined given I
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How to select I: adaptive sparse grids Gerstner & Griebel, 2003

Multi-index set
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Given i = 1, I = {i} and R = ∅ repeat:

1 Add to R the neighbors of i feasible wrt to I
2 Compute SI∪B[u]

3 find the index j ∈ R that improved the most the approximation (e.g. check
the difference in approximation of the mean or in L∞-norm)

4 set i = j and move it from R to I

NB: omitting technicalities using non-nested points and unbounded Γ.
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To refine or to add rand. var.? Dimension-adaptivity

Problem: generating R in high-dimensional spaces is too expensive.

Assume that the Karhunen–Loève expansion γ = σ
∑N

k=1 ykγkφk
introduces a “weak ordering” of random variables, i.e. there exists
Nb ≥ 1 (buffer) s.t. yn+Nb

is guaranteed to be less important than yn.

Idea: Add random variables gradually (balance refinement and
addition of variables). Note that this means we don’t need to
truncate a-priori the Karhunen–Loève expansion of γ!

Define a random variable yn as activated if mini∈I in > 1.

A simple dimension-adaptive algorithm

1 start the adaptive algorithm using Nb random variables

2 As soon as one of these “buffer variables” gets activated, add a new
random variable to the approximaton.
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Define a random variable yn as activated if mini∈I in > 1.

A simple dimension-adaptive algorithm

1 start the adaptive algorithm using Nb random variables

2 As soon as one of these “buffer variables” gets activated, add a new
random variable to the approximaton.

Lorenzo Tamellini (EPFL) April 17, 2015 13 / 20



To refine or to add rand. var.? Dimension-adaptivity

Problem: generating R in high-dimensional spaces is too expensive.

Assume that the Karhunen–Loève expansion γ = σ
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Define a random variable yn as activated if mini∈I in > 1.

A simple dimension-adaptive algorithm

1 start the adaptive algorithm using Nb random variables

2 As soon as one of these “buffer variables” gets activated, add a new
random variable to the approximaton.

Lorenzo Tamellini (EPFL) April 17, 2015 13 / 20



The uncertain Darcy problem – results 1
Field data: σ = 1, corr. length Lc = 0.5, γ(x, y) smooth wrt x
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moderate number of random variables needed

convergence robust wrt. type of points and E[]/L∞-driven adaptation

Smoothness Warning!

If γ(x, y) is not smooth wrt x (depends on the covariance function), a
larger number of random variables is needed and even the adaptive sparse
grids may not be effective!
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Rough random fields γ: Monte Carlo Control Variate
γ non-differentiable wrt x ⇒ sparse grids may be non-effective.

Remedy: use sparse grids as control var. (preconditioner) for MC

1 Consider a smoothed field γε, such that QI [uε]→ E[uε] quickly.

smoothed field, ε = 1/24 smoothed field ε = 1/26 non-smoothed field, ε = 0

2 Define uCV = u − uε +QI [uε]. There holds

E[uCV ] = E[u], Var(uCV ) = Var(u) + Var(uε)− 2cov(u, uε)

Thus, the smaller ε, the smaller the MC error, but slower the
convergence QI [uε]→ E[uε].

3 Set E[uCV ] ≈ 1

M

M∑
i=1

uCV (ωi ) =
1

M

M∑
i=1

(u(ωi )− uε(ωi )) +Qm
I [uε].

Here we simply choose M = card(pts(SI [u])) (work balance). Other
strategies are possible.
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The uncertain Darcy problem – results 2

Field data: σ = 1, corr. length Lc = 0.5, rough field realizations (Hölder
continuous only)
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MCCV error. ∼ 30 r.v. activated. The sparse grid error worsens as ε→0.
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Conclusions

1 Uncertainty Quantification is a fast-growing area at the interface
between Scientific Computing and Statistics;

2 Whenever the quantity of interest is smooth wrt the random
parameters, adaptive sparse grids schemes can be used as an effective
alternative to the Monte Carlo strategy;

3 The dimension-adaptive implementation allows to work without
a-priori truncation of the random field;

4 If the random field has rough realizations, using adaptive sparse grids
in a Monte Carlo Control Variate framework can improve results.
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Thank you for your attention!

Make sure to attend

SIAM-UQ 2016

April 5-8, 2016

SwissTech Convention Center

EPFL, Lausanne, Switzerland
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