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The uncertainty quantification problem

parameters math. model quantity of
— -
y P(state vars.,y) =0 interest u(y)

@ The parameters y of the model may be affected by uncertainty
(experimental measures, limited knowledge on system properties).

@ y can be modeled as a random vector with N components, taking
values in ' € RN with joint probability density function o(y).

Therefore u is a random function, u(y). )

Goal: Compute statistical quantities for u, i.e. assess how the uncertainty
on the parameters reflects on u: E[u], Var[u], Pr(u > up).

Method: Use sparse grids collocation to exploit regularity of u(y).
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Some examples on what can be done

Diffusion problem with random inclusions ( “the cookies problem”)
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Some examples on what can be done

Steady Navier-Stokes with uncertain Reynolds and forcing term
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The Darcy problem

Find a pressure p : D — R, such that (e'Vp) n=0
—V (&7 — i
V- (e"Vp)=f in D, ot D peo
+B.C. (see plot on the right).
u = outward flux from the right-hand boundary.

the log-permeability field -y is not constant in space (see
right) but in practice we know its value only at log-points
(drill locations). How to fill the gaps?

4

model v as a random field

[
4 -2 0 2 4
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Random fields

@ instead of v = y(x), let v = v(x,y) with y, random variables, y € I'":

» for each realization ~(-,y) is a function in L°>°(D)
» for each physical point y(x,-) is a random variable

@ a covariance function describes the interaction between any couple of points,
C _ lIxo—x1|1?
e.g. Cov[xg,x1] = exp -z

@ represented by a (truncated) Karhunen-Loéve expansion

N r=nRN
Y% y) =0 Y ywek(x),  yi~N(0,1)iid. = _ 1 I
= oly) = me 2

Find a pressure p(x,y) : D x I — R, such that g-a.e.:

-V - (e'Y(x)Y)Vp(x’ y)) = f(X) X € D7
+B.C.

u(y) = outward flux is a random fun.— approximate e.g. E[u]
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What strategy?

Problem: we may need tens-hundreds of random variables to represent
accurately the field! How can we tackle this? J

Monte Carlo Polynomial approximation
@ Generate a sample {y;}M, ® The mapy — u(x,y) is

1 actually very smooth
o Elu] = uyc = = Z u(y;) _ _ _
; @ Approximate it by a polynomial

te model,
@ accuracy O(1/v/M). Slow but surrogate mode

independent of N (no “curse of u(y) % tpot = 3; uii(y)
dimensionality") @ E[uyo] by post-process

@ convergence of ||u — upe|| may
deteriorate with N

In this talk: Polynomial approximation by adaptive sparse grids (reduced “curse
of dimensionality”) + Monte Carlo with control variate J
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Sparse grid approximation of u(y)

Let i € NV and denote by 7™M[u](y) the tensor Lagrangian interpolant of
u(y) over I with m(i1) x m(i1) x ... m(in) points.

A sparse grid approximation is a linear combination of tensor interpolants:

Selul(y) =) aT"Lly),  E[u] ~ Qz[u] := ) wiu(y:)

i€l

Sz[ul(y) = TEUWy)  +  TUBly) o+ TEOIu(y)

In practice, solve the Darcy problem for each y; in the grid and combine
them according to the formula above
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Sparse grid approximation of u(y)

Let i € NV and denote by 7™M[u](y) the tensor Lagrangian interpolant of
u(y) over I with m(i1) x m(i1) x ... m(in) points.

A sparse grid approximation is a linear combination of tensor interpolants:

Selul(y) =) aT"Lly),  E[u] ~ Qz[u] := ) wiu(y:)

i€l

Sparse grids idea: cheaper than full tensor grids, but similar
accuracy

@ Univariate points: y; ~ NV(0,1) — Gauss—Hermite, Genz—Keister,
gen. Leja

The efficiency of the sparse grids depends on 7.
Admissibility condition for Z: Vic1Z, i—-e T ifij>1.

The coefficients ¢ are uniquely defined given 7
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How to select Z: adaptive sparse grids  Gerstner & Griebel, 2003

Multi-index set

m | 1
@ curr. idx|

0.5

Sparse grid set

=2

= 0
2 4 6 8 -1 -0.5 0 0.5 1

Giveni=1,Z = {i} and R = & repeat:
© Add to R the neighbors of i feasible wrt to Z
@ Compute Szuplu]

© find the index j € R that improved the most the approximation (e.g. check
the difference in approximation of the mean or in L>°-norm)

© set i =j and move it from R to 7

NB: omitting technicalities using non-nested points and unbounded T.
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How to select Z: adaptive sparse grids

Multi-index set
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Giveni=1,Z = {i} and R = & repeat:
© Add to R the neighbors of i feasible wrt to Z

@ Compute Szus(y]
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© find the index j € R that improved the most the approximation (e.g. check
the difference in approximation of the mean or in L®-norm)

@ seti=jand move it from R to 7

NB: omitting technicalities using non-nested points and unbounded T.
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To refine or to add rand. var.? Dimension-adaptivity

@ Problem: generating R in high-dimensional spaces is too expensive.
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@ Problem: generating R in high-dimensional spaces is too expensive.

@ Assume that the Karhunen—Loéve expansion vy = ¢ ZLV:1 YYDk
introduces a “weak ordering” of random variables, i.e. there exists
Np > 1 (buffer) s.t. ypin, is guaranteed to be less important than y;.
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To refine or to add rand. var.? Dimension-adaptivity
@ Problem: generating R in high-dimensional spaces is too expensive.

@ Assume that the Karhunen—Loéve expansion vy = ¢ ZLV:1 YYDk
introduces a “weak ordering” of random variables, i.e. there exists
Np > 1 (buffer) s.t. ypin, is guaranteed to be less important than y;.

e ldea: Add random variables gradually (balance refinement and
addition of variables). Note that this means we don’t need to
truncate a-priori the Karhunen—Loéve expansion of !

@ Define a random variable y, as activated if minjcz i, > 1.

A simple dimension-adaptive algorithm
© start the adaptive algorithm using N random variables

@ As soon as one of these “buffer variables” gets activated, add a new
random variable to the approximaton.
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The uncertain Darcy problem — results 1
Field data: o =1, corr. length L. = 0.5, y(x,y) smooth wrt x
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@ moderate number of random variables needed

@ convergence robust wrt. type of points and E[]/L*°-driven adaptation

Smoothness Warning!

If v(x,y) is not smooth wrt x (depends on the covariance function), a
larger number of random variables is needed and even the adaptive sparse
grids may not be effective!

v
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Rough random fields v: Monte Carlo Control Variate

~ non-differentiable wrt x = sparse grids may be non-effective.
Remedy: use sparse grids as control var. (preconditioner) for MC

@ Consider a smoothed field 74, such that Q7[u¢] — E[u¢] quickly.

smoothed field, € = 1/24 smoothed field € = 1/26 non-smoothed field, e = 0
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Rough random fields v: Monte Carlo Control Variate
~ non-differentiable wrt x = sparse grids may be non-effective.
Remedy: use sparse grids as control var. (preconditioner) for MC

@ Consider a smoothed field ~¢, such that Q7[u‘] — E[u] quickly.

@ Define ucy = v — u + Qr[u]. There holds
Elucv] = E[u], Var(ucy) = Var(u) + Var(u®) — 2cov(u, uf)

Thus, the smaller ¢, the smaller the MC error, but slower the
convergence Q7[uf] — E[uf].
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Rough random fields v: Monte Carlo Control Variate
~ non-differentiable wrt x = sparse grids may be non-effective.
Remedy: use sparse grids as control var. (preconditioner) for MC

@ Consider a smoothed field ~¢, such that Q7[u‘] — E[u] quickly.

@ Define ucy = v — u + Qr[u]. There holds
Elucv] = E[u], Var(ucy) = Var(u) + Var(u®) — 2cov(u, uf)

Thus, the smaller ¢, the smaller the MC error, but slower the
convergence Q7[uf] — E[uf].

LM
O Set Elucy] ~ MZUCV(M = MZ(U w;) wi)) + QT [u°].
i=1

Here we simply choose M = card(pts(Sz[u])) (work balance). Other

strategies are possible.
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The uncertain Darcy problem — results 2

Field data: o =1, corr. length L. = 0.5, rough field realizations (Holder

continuous only)

error
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MCCV error. ~ 30 r.v. activated.
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The sparse grid error worsens as € —0.



Conclusions

@ Uncertainty Quantification is a fast-growing area at the interface
between Scientific Computing and Statistics;

@ Whenever the quantity of interest is smooth wrt the random
parameters, adaptive sparse grids schemes can be used as an effective
alternative to the Monte Carlo strategy;

© The dimension-adaptive implementation allows to work without
a-priori truncation of the random field;

@ If the random field has rough realizations, using adaptive sparse grids
in a Monte Carlo Control Variate framework can improve results.
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Thank you for your attention!

Make sure to attend

SIAM-UQ 2016

April 5-8, 2016
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